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Abstract. We introduce a natural extension of the usual covariance property for the reflection
equation. To solve one reflection equation we propose to use a family of reflection equations
with various Drinfeld twists of the initialR-matrix. This allows us to produce non-trivial
representations of the reflection equation algebra in a systematic way. As an example, we
consider a twist of the Lie algebrasl(2) related to some integrable tops and to the Toda lattices
associated with theDn root system.

1. Introduction

One of the cornerstones of the quantum inverse scattering method is quadraticR-matrix
algebra with spectral parameter dependence. The rich structure of the Yang–Baxter algebra
[1, 2] and of reflection equation algebra [4, 7] permits us to include into this formalism a
variety of known integrable models and to find new ones.

However, to find a representation of these algebras in a given quantum space is a
formidable task unless we have some additional information. In particular, if we know a
representation of the Yang–Baxter algebra, we can construct representations of the reflection
equation algebra by using the covariance property of this algebra [4, 7]. In terms of
integrable models the representations of the Yang–Baxter algebra provide us with integrable
lattices while theC number representations of the reflection equation algebra describe the
possible boundary conditions for such lattices [3–6].

In this paper we consider generalizations of the covariance property for the reflection
equation. In this way the reflection equation is reduced to a system of equations, which
allows us to produce non-trivial representations of the reflection equation algebra in a
systematic way. For a given integrable lattice the proposed system of equations may be
solved by using either known Drinfeld twists of theR-matrix or some ansatz for a boundary
matrix. We would like to stress that the resulting boundary matrices act in the same quantum
space with the initial representation of the Yang–Baxter algebra. It allows us to comment
upon dynamical boundary conditions for integrable lattices. From a more mathematical
point of view an interesting relation between the Drinfeld twist and the associated twist
of the underlying Lie algebra is made. We shall start with several abstract propositions
and then discuss its applications to different integrable lattices. As an example, we present
dynamical boundary conditions associated to the twist of the algebrasl(2) for the Toda
lattice and an integrable top.
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2. On a covariance property of the reflection equation

Let the operator-valued functionR(u) : C → Aut(V ⊗ V ) be a solution to the quantum
Yang–Baxter equation [1] in a finite-dimensional linear spaceV . Let us connect with a given
matrix R(u) two associative algebrasTR andUR generated by non-commutative entries of
the square matricesT (u) andK(u) satisfying the fundamental commutator relation [1, 2]

R12(u− v)
1
T (u)

2
T (v) =

2
T (v)

1
T (u)R12(u− v) (2.1)

or the reflection equation [3, 4]

R12(u− v)
1
K(u)R21(u+ v)

2
K(v) =

2
K(v)R12(u+ v)

1
K(u)R21(u− v). (2.2)

Here
1
X ≡ X ⊗ idV2,

2
X ≡ idV1 ⊗ X for any matrix X ∈ End(V ). As usual,

Rij (u) ∈ End(Vi ⊗ Vj ), Vj ≡ V and Rji(u) = PRij (u)P , with P as the permutation
operator in the tensor product of the two spacesVi ⊗ Vj [1, 2].

In this paper we discuss solutions to the reflection equation (2.2), i.e. consider various
representations of the algebraUR [4]. It is known that the covariance property of the
reflection equation (2.2) [4, 7] may be used to construct new solutions starting from known
ones. The following was pointed out in [4].

Proposition 1.Let the matricesT (u) andK(u) satisfy the relations (2.1) and (2.2) with the
sameR-matrix R(u), then the Sklyanin monodromy matrix

K ′(u) = T (u)K(u)T −1(−u) (2.3)

solves the reflection equation (2.2) if

1
T (u)

2
K(v) =

2
K(v)

1
T (u). (2.4)

The proof follows easily by substitution ofK ′(u) into the reflection equation (2.2) and by
using a few different forms of the fundamental relation (2.1), for example

2
T
−1(−v)R12(u+ v)

1
T (u) =

1
T (u)R12(u+ v)

2
T
−1(−v). (2.5)

The main condition (2.4) holds ifT (u) andK(u) are representations of the algebrasTR
andUR in the different spacesH1 ⊗ V andH2 ⊗ V respectively, hence the entriesT (u)
andK(u) mutually commute. HereH1 andH2 are the distinct quantum spaces andV is a
common auxiliary space [1, 2].

In this paper the Sklyanin monodromy matrixK ′ (2.3) is constructed from the known
representationsT (u) andK(u) of the algebrasTR andUR defined on the common quantum
spaceH, i.e. using matrices with the non-ultralocal commutation relations [8]. In this case
the initial matrixK(u) will be termed thedynamicalboundary matrix.

Let us include the construction of the Sklyanin representationK ′ (2.3) and ignore the
covariance property of the initial reflection equation (2.2).

Proposition 2. Let T (u) satisfy the fundamental commutator relation (2.1). If it is
intertwined with the dynamical boundary matrixK(u), the initial matrixR(u) and by some
new matrixS(u, v)

1
K(u)

2
T (v)R12(u+ v)

1
T
−1(−u) 2

K(v) =
2
T (v)

1
K(u)S21(u, v)

2
K(v)

1
T
−1(−u) (2.6)
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then the Sklyanin monodromy matrix

K ′(u) = T (u)K(u)T −1(−u)
solves the initial reflection equation (2.2) provided that the dynamical boundary matrixK(u)

satisfies the generalized reflection equation

R12(u− v)
1
K(u)S21(u, v)

2
K(v) =

2
K(v)S12(u, v)

1
K(u)R21(u− v). (2.7)

Since S(u, v) is an arbitrary matrix the proof consists of the direct verification of the
reflection equation (2.2) by using relations (2.1), (2.6) and (2.7).

For a given matrixT (u) we try to find the dynamical boundary matrixK(u) together
with the matrixS(u, v) from equation (2.6), then we have to check the generalized reflection
equation (2.7) intertwining both these matrices with theR-matrix.

Particular solutions to equation (2.6) may be obtained from the following system of
equations

1
K(u)

2
T (v) =

2
T (v)

1
K(u)F (u, v)

1
T
−1(−u) 2

K(v) = G(u, v)
2
K(v)

1
T
−1(−u)

(2.8)

with the two unknown matricesF(u, v) andG(u, v). In this case the dynamical boundary
matrixK(u) has to be a solution to the generalized reflection equation (2.7) with the matrix

S(u, v) = F(u, v)R(u+ v)G(u, v). (2.9)

Equations (2.8) have the same form as exchange algebras [9]. Obviously, other forms of
these algebra are

F(u, v) = 1
K
−1(u)

2
T
−1(v)

1
K(u)

2
T (v)

G(u, v) = 1
T
−1(−u) 2

K(v)
1
T (−u)

2
K
−1(v).

Let the dynamical boundary matrixK(u) have the following property

K(u)K(−u) = φ(u)I (2.10)

whereφ(u) means some scalar function. In this case the matrixS(u, v) (2.9) is the Drinfeld
twist [10] of the matrixR(u+ v)
S(u, v) = F(u, v)R(u+ v)F−1

21 (−v,−u) F21(u, v) = PF(u, v)P (2.11)

if the universal twist elementF(u, v) has appropriate properties [10]. Note, a twist
transformation (2.11) of theR-matrix related to the braid group̌R = PR

Š(u, v) = PS(u, v) = F21(u, v)ŘF
−1
21 (−v,−u)

looks just like Sklyanin formulae (2.3), in contrast to the usual similarity transformation in
quantum group theory.

We next recall that, for integrable lattice models, matrixT (u) is constructed as an
ordered product

T (u) = Ln(u)Ln−1(u) . . . L1(u) (2.12)

of n independentL-operators having some simple dependence on the spectral parameter
u. MatricesLk(u) in the chain (2.12) are operators which act on the different local spaces
Hk ⊗ V , we now use the notationHk for a local quantum space assigned to the sitek in
the lattice andV ' Cn is a common auxiliary space [1, 2].
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LetK(u) be the representation of the reflection equation algebraUR in the spaceH−⊗V .
Then, the Sklyanin monodromy matrix (2.3) [4–6]

K−(u) = Ln(u)Ln−1(u) . . . L1(u)K(u)L
−1
1 (−u)L−1

2 (−u) . . . L−1
n (−u) (2.13)

describes a lattice model with boundary conditions corresponding to the matrixK(u). As
usual, the transfer matrix is given by

τ(u) = trK+(u)T (u)K(u)T −1(−u) = trK+(u)K−(u). (2.14)

Here an extra boundaryK-matrixK+ is some solution of a ‘conjugated’ reflection equation
[4, 7] on the quantum spaceH+ defined in such a way to guarantee the commutativity
[τ(u), τ (v)] = 0. This transfer matrix gives rise to the Hamiltonian and other integrals of
motion for a quantum system with the space of statesH = H+ ⊗Hn⊗Hn−1 . . .H1⊗H−.

Looking for dynamical boundary matricesK(u) we can start with a single operator
L(u) in the chain (2.13). In addition, we can begin either with the generalized reflection
equation (2.7) by using known twistsS(u, v) [10, 12, 16], or with the exchange algebras
(2.8) by assuming some ansatz for the boundary matrixK(u).

3. The Toda lattices

As an example, let us consider the followingL-operator

L(u) =
(
u− p − exp(q)

exp(−q) 0

)
[p, q] = −iη (3.1)

where (p, q) is a pair of canonical conjugated variables. ThisL-operator is intertwined
(2.1) by the rational YangR-matrix

R(u) = uI − iηP P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.2)

whereP is the permutation operator inC2⊗ C2 and

R(u) =


u− iη 0 0 0

0 u −iη 0
0 −iη u 0
0 0 0 u− iη

 =

f 0 0 0
0 g h 0
0 h g 0
0 0 0 f

 (u). (3.3)

In this case the monodromy matrixT (u) (2.12) describes the Toda lattices associated with
the root systemAn [18]. The corresponding Hamiltonian reads as

HA =
n∑
j=1

1

2
p2
j +

n−1∑
j=1

exp(qj+1− qj ). (3.4)

The set of operators{L(qj , pj , u)}nj=1 (3.1) defines the monodromy matrixT (u) (2.12),
which is a spin-1/2 representation of the YangianY (sl(2)) in V = C2. So, the inversion
T i(u) = T −1(−u) is equal to [4]

T i(u) = σ2T
t(−u− iη)σ2

1{T (−u− (iη/2))} . (3.5)
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where t means matrix transposition,σ2 is the Pauli matrix and1{T (u)} is a quantum
determinant ofT (u). According to the general recipe [4], it allows us to work with the
algebraŨR instead ofUR. The new algebrãUR has the following Sklyanin representation

K− = T (u)K
(
u− iη

2

)
σ2T

t(−u)σ2. (3.6)

Let us begin with the known scalar solution of the reflection equation (2.2)

Kc(u) =
(
a b

c d

)
(u) ≡

(
αu+ δ βu

γ u −αu+ δ
)

(3.7)

whereα, β, γ and δ are complex numbers. By using the monodromy matrixT (u) (2.12),
the usual covariance property and the solutionKc(u) (3.7) one can get the monodromy
matrix K− (3.6), which describes the Toda lattices associated with the root systemAn by
α = δ = γ = 0 (3.4) and with the root systemBCn by β = 1 [4, 5]. In the second case the
corresponding Hamiltonian is given by

HBC = HA − γ
2

exp(2q1)+ (δ − αp1) exp(q1). (3.8)

The transfer matrix (2.14) with the ‘conjugated’ toKc (3.7) matrixK+ allows us to describe
other Toda lattices associated with several affine root systems [4, 5, 11].

Looking for the dynamical boundary matrixK(u) let us begin with the single operator
L(u) (3.1) in the chain and introduce the following ansatz for the dynamical boundary
matrix

K(u) =
(
a b

c d

)
(q, u) (3.9)

wherea, b, c andd are functions of the spectral parameteru and one dynamical variableq
only. This matrixK(u) (3.9) depends on half dynamical variables and, therefore, may be
constructed from the scalar solutions to the generalized reflection equation.

Inserting the ansatzK(q, u) (3.9) into the dynamical exchange algebras (2.8) and then
into the general dynamical equation (2.6) we get two non-trivial upperc(q, u) = 0 and
lower b(q, u) = 0 triangular matrices. In both these solutions the diagonal entriesa(u) and
d(u) are independent on the dynamical variableq.

Note that the triangular boundary matrices with the property (2.10) are obtained from
the dynamical equations (2.6)–(2.8) by using the special ansatz (3.9). Only then, due to the
special structure of the boundary matrices, can we see that the transformation (2.9) of the
Yang solutionR(u) (3.3) is just the Drinfeld twist (2.11) depending on spectral parameters
[10] only. Moreover, these twists are closely connected to the twists of the underlying Lie
algebrasl(2).

3.1. Lower triangular dynamical matrix

Inserting the lower triangular matrix

Kd =
(
a(u) 0
c(q, u) d(u)

)
(3.10)

into the system (2.8) one gets two dynamical equations

[p, c(q, u)] = −z(q, u)d(u)exp(q) [p, c(q, v)] = z′(q, v)a(v)exp(q) (3.11)
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related with the following matrices

F =


1 0 0 0
0 1 0 0
0 0 1 0

z(q, u) 0 0 1

 G =


1 0 0 0
0 1 0 0
0 0 1 0

z′(q, v) 0 0 1

 .
Here z(q, u) and z′(q, v) are functions of the spectral parameters and of the dynamical
variableq. By using the generatorsh, e,f of the underlying Lie algebrasl(2)

[h, e] = 2e [h,f ] = −2f [e,f ] = h (3.12)

let us introduce an appropriate elementF ∈ U(sl(2))⊗ U(sl(2))
Fz = exp(z · f ⊗ f) z ∈ C

belonging to a tensor product of the corresponding universal enveloping algebrasU(sl(2))
[12]. In the fundamental spin-1/2 representationρ 1

2
we have

F = (ρ 1
2
⊗ ρ 1

2
)Fz G = (ρ 1

2
⊗ ρ 1

2
)Fz′ .

However, nowz andz′ are the proper functions of both spectral parameters, the associated
twist (2.9)

S(u, v) = FR(u+ v)F−1
21 = Izz′ [(u+ v)I − iηP ]

Izz′ = exp((z+ z′) · f ⊗ f)
is equal to

S(u, v) = FR(u+ v)G =


f 0 0 0
0 g h 0
0 h g 0

[z(q, u)+ z′(q, v)] 0 0 f

 (u, v).
Next, the only possible solution to the dynamical equations (3.11) is given by

Kd =
(

u 0
uγ (q) −u

)
.

Here the entryγ (q) is defined by

[p, γ (q)] = z(q) exp(q) (3.13)

with an arbitrary functionz(q) of the dynamical variableq and z(q) = −z′(q), hence
S(u, v) = R(u+ v).

Next, we have to solve the general dynamical equation (2.6). Let the matrixS(u, v)

equal

S(u, v) =


f 0 0 0
0 g h 0
0 h g 0

z(q, u, v) 0 0 f

 (u, v)
wherez(q; u, v) is an arbitrary entry. Substituting this matrix and the matrixKd (3.10) into
(2.6) one gets the following dynamical equation

a(v)[p, c(q, u)] + d(u)[p, c(q, u)] = z(q; u, v) a(v)d(u)
u+ v − iη

exp(q) (3.14)

which by c(q, u) = γ (q)u reads as

[p, γ (q)] = z(q; u, v) a(v)d(u)

(ua(v)+ vd(u))(u+ v − iη)
exp(q). (3.15)
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Solving the generalized reflection equation (2.7) with this matrixS(u, v) one gets the same
possible non-trivial solutionKd (3.10) only.

To construct the transfer matrixτ(u) (2.14) let us substituteq = q1 in the matrix
Kd(q, u) and q = −qn in the ‘conjugated’ matrixK+(q, u) = K t

d(−qn, u). Thus, the
dynamical boundary matricesKd andKd+ have common quantum spaces with the firstL1

and with the lastLn operators in the lattice. This generating polynomial

τ(u) = tr

(
K t

d

(
− qn, u+ iη

2

)
Ln(qn, u) . . . L1(q1, u)

×Kd

(
q1, u− iη

2

)
σ2L

t
1(q1,−u) . . . Lt

n(qn,−u)σ2

)
has the form

τ(u) = H1u
2n +H2u

2n−2+ · · ·
and gives rise to the commutative family ofn functionally independent integrals of motion.
If the entry z(u, v, q) is independent on the dynamical variableq then the solution to
equations (3.13) and (3.15) is equal to

γ (q) = γ exp(q)+ β
whereas the first integralH1 has the following factorable form

H1 = J1 · Jn = (2p1+ γ− e2q1 + β− eq1) eq1 · e−qn(−2pn + γ+ e−2qn + β+ e−qn).

Here (γ−, β−) and (γ+, β+) are the free parameters associated with the boundary matrices
Kd(q1, u) andK t

d(−qn, u), respectively.
This integrable system may be considered as the constrained Hamiltonian system either

with one constraintH1 = constant, or with two constraints

q1 = constant1, qn = constantn or J1 = constant1, Jn = constantn.

3.2. Upper triangular dynamical matrix

Inserting the upper triangular matrix

KD =
(
a(u) b(q, u)

0 d(u)

)
(3.16)

into the system (2.8) one gets two dynamical equations

[p, b(q, u)] = −w(q, u) a(u)exp(q) [p, b(q, v)] = −w′(q, v) d(v)exp(q) (3.17)

related to the following matrices

F =


1 0 0 0
0 1 w(q, u) 0
0 0 1 0
0 0 0 1

 G =


1 0 0 0
0 1 0 0
0 w′(q, v) 1 0
0 0 0 1

 . (3.18)

Here w(q, u, v) and w′(q, u, v) are functions of spectral parameters and the dynamical
variableq.

In generators (3.12) the corresponding twist elementF ∈ U(sl(2))⊗U(sl(2)) is equal
to

Fw = exp(w · f ⊗ e) w ∈ C
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(see the factorization of the universalR-matrix in [12, 16]). In the fundamental spin-1/2
representationρ 1

2
we have

F = (ρ 1
2
⊗ ρ 1

2
)Fw G = P(ρ 1

2
⊗ ρ 1

2
)Fw′P.

However, noww andw′ are the corresponding (3.17) functions of the spectral parameters.
We can see,G = F−1

21 up to change the twist parametersw(q, u) → −w′(q, v). The
associated twisted matrixS(u, v) (2.9) is equal to

S(u, v) = F12(w)((u+ v)I − iηP )F−1
21 (w

′) = Jww′ − iηIww′P

where

Jww′ = (ρ 1
2
⊗ ρ 1

2
) exp(w · f ⊗ e+ w′ · e⊗ f)

Iww′ = (ρ 1
2
⊗ ρ 1

2
) exp((w + w′) · f ⊗ e).

In fact, matrixS(u, v) has the following form

S(u, v) =


f 0 0 0
0 g + h(w + w′)+ ww′g h+ wg 0
0 h+ w′g g 0
0 0 0 f

 (u, v) (3.19)

wheref , g andh are entries of the initialR-matrix (3.3).
For a givenS-matrix (3.19) we shall not solve the dynamical equations (3.17) and

the generalized reflection equation (2.7) generically. Here, we restrict ourselves to those
particular solutions which are related to interesting physical systems only.

At first, let us introduce an upper triangular matrixKD with the following entries

a(u) = d(u) = u b(q, u) = β exp(q)+ γ. (3.20)

One immediately gets

w(u) = iηβu−1 w′(v) = iηβv−1

where the parametersw andw′ of the twist are independent on the dynamical variableq.
Thus, from the linear matrix-functionR(u) (3.3) we obtain the rational matrixS(u, v), which
has the upper and lower triangular residues at the pointsu = 0 andv = 0, respectively.

The second more complicated solutionKgD is defined by

a(u) = u2+ αu+ δ d(u) = a(−u) b(q, u) = (β exp(q)+ γ )u. (3.21)

For both solutions

K(u)K(−u) = ∓φ(u)I
where the functionφ(u) is equal to the determinant of the matricesKD and KgD,
respectively.

To construct the transfer matrixτ(u) (2.14) let us substituteq = q1 in the matrix
KD(q, u) and q = −qn in the ‘conjugated’ matrixK+(q, u) = K t

D(−qn, u). This means
that the dynamical boundary matricesKD andKD+ have common quantum spaces with the
first L1 and the lastLn operators in the lattice. The generating polynomialτ(u) (2.14)

τ(u) = tr

(
K t

D

(
− qn, u+ iη

2

)
Ln(qn, u) . . . L1(q1, u)

×KD

(
q1, u− iη

2

)
σ2L

t
1(q1,−u) . . . Lt

n(qn,−u)σ2

)
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has the form

τ(u) = H1u
2n+2+H2u

2n + · · · (3.22)

and gives rise to the commutative family of (n + 1) functionally independent integrals of
motion. The use of the second dynamical matrixKgD (3.21) leads to similar results.

For both solutions the first integralH1 in expansion (3.22) may be considered as the
factorable constraint

H1 = J1 · Jn = (−2 eq1 + β− eq1 + γ−) · (2 e−qn + β+ e−qn + γ+).
Here (γ−, β−) and (γ+, β+) are the free parameters associated with the dynamical entries
of the boundary matricesKD(q1, u) andKD+ = K t

D(−qn, u), respectively.
In contrast with the lower triangular solution this constraint is easy removed, if the

parametersw andw′ of the twist are independent on the dynamical variableq. Namely,
unless otherwise indicated, set

β± = ∓2

such thatH1 = γ−γ+ = constant and the generating polynomial (3.22) gives rise ton

independent integrals of motion only.
After canonical transformation of the variables

eq → 1− ch(q) (3.23)

in the first, H1 and in the last,Hn local quantum spaces in the chain, the associated
HamiltoniansH read as

HD = HA + exp(−qn−1− qn)+ exp(q1+ q2)

HgD = HD + α1

sinh2(q1/2)
+ α2

sinh2 q1
+ α3

sinh2(qn/2)
+ α4

sinh2 qn
.

(3.24)

Here the four constantsαj are functions of the four initial constantsα± and δ± in the
diagonal entries (3.21) of the boundary matrices [5].

Thus, the dynamical boundary matrixKD (3.20) corresponds to the Toda lattices
associated with the root systemDn [11]. Hence, the single spin-1/2 representationT (u)
(2.12) and (3.1) of the YangianY (sl(2)) may be used to construct the monodromy matrices
for the Toda lattices associated to all the classical infinite series of root systems. The second
solutionKgD (3.21) allows us to add four extra parameters in the HamiltonianHD and this
is known as Inozemtsev’s generalization of the Toda system [13].

The boundary matricesK ′D = L(u)KDL
−1(−u) andK ′gD = L(u)KgDL

−1(−u) were at
first found in [5] starting from the known (2n× 2n) Lax matrices [13]. They are solutions
to the usual reflection equation, which have the ultralocal commutation relations with other
matrices in the chain. Note, we have to use the two different representationsT (u) (2.12)
of the YangianY (sl(2)) to describe Toda lattices associated with theBCn and Dn root
systems by using the matricesKc andK ′D, respectively. In classical mechanics factorization
K ′D = L(u)KD(q, u)L

−1(−u) on the terms with non-ultralocal commutator relations has
been applied to the separation of variables in [15].

Two outer automorphisms of the space of infinite-dimensional representations of the Lie
algebrasl(2) are used to recover these boundary matricesK ′D andK ′gD in [14]. It would
be interesting to study the interrelations among these automorphisms ofsl(2) and the twists
(2.11) of the usual rationalR-matrix.

The relativistic Toda lattices associated with theDn root systems [19] may be easily
embedded in the proposed scheme as well. In this case the correspondingR-matrix is the
known trigonometric solution to the Yang–Baxter equation [19] and the associated twist is
connected to the twist of the algebraslq(2).
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3.3. The Drinfeld twist and separation of variables method

We know that the representation theory of Drinfeld twists may be very useful in the
framework of the algebraic Bethe ansatz [16]. According to [16], for theXXX- 1

2 and
XXZ- 1

2 Heisenberg (inhomogeneous) quantum spin chains of finite lengthn the associated
F -matrices diagonalize the generating matrix of scalar products of the quantum states
of these models. They also diagonalize the diagonal (operator) entries of the quantum
monodromy matrix.

Now, we discuss the interrelations of the Drinfeld twists and the separation of variables
method proposed by Sklyanin [17]. For the sake of brevity we shall work with the
corresponding classical objects.

Starting from the known (2n× 2n) Lax matrices we can obtain solutionsK ′D or K ′gD to
the reflection equation (2.2) with ultralocal commutation relations. In classical mechanics
the associated (2× 2) Lax matrix is equal to

L′(u) = K ′tD(−qn, u)Ln−1(qn−1, u) . . . L2(q2, u)

×K ′D(q1, u)σ2L
t
2(q2,−u) . . . Lt

n−1(qn−1,−u)σ2. (3.25)

Here all the local matricesLj(u), j = 2, . . . , n− 1 and boundary matricesK ′D(q1,n, u) are

defined on the different phase spaces such that{
1
Lj(u),K

′2
D(q1,n, v)} = 0.

In the Sklyanin approach [17] the use of this Lax matrix forces application of the
dynamical normalization of the corresponding Baker–Akhiezer vector-function9 [15]. The
choice of the proper normalizationα [17]

(a, 9) =
∑
j=1

αj (u)9j (u) = 1

allows us to fix special analytical properties of this meromorphic eigenfunction9 of the
Lax matrixL′(u)

L′(u)9 = z9.
An appropriate normed vector-function9 has to possess the necessary number of poles in
involution and all the extra poles of9 are constants [17]. However, one does not usually
know the separating normalization in advance.

It is clear, using a similarity transformation for the Lax matrixL′(u)
L′(u)→ L(u) = V (u)L′(u)V −1(u) (3.26)

that any normalizationa may be turned into the simplest constant normalization vector [17].
So, in classical mechanics the problem is to find an appropriate similarity transformation
(3.26).

In quantum mechanics an action of the similarity transformations (3.26) may be
transferred into theR-matrix level. If we transform theR-matrix in the special twists
only, we essentially restrict the freedom related to similarity transformations (3.26). The
twistedR-matrix possesses most of the properties of the usualR-matrix [10] and possibly
gains some new properties, for example admissible [10] or factorizing [16] twists may be
used.

In this paper, starting from the known Yang solutionR(u) of the Yang–Baxter equation
we introduce the twistS(u, v), which has other analytical properties. By next solving the
corresponding dynamical equations and the generalized reflection equation we obtain the
dynamical boundary matricesKD or KgD. The associated (2× 2) Lax matrix is equal to

L(u) = K t
D(−qn, u)Ln(qn, u) . . . L1(q1, u)×KD(q1, u)σ2L

t
1(q1,−u) . . . Lt

n(qn,−u)σ2.

(3.27)
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Here two local matricesL1,n(u) and boundary matricesKD(q1,n, u) are defined
on the common phase spaces and the corresponding Poisson brackets relations

{ 1
L1,n(u),

2
KD(q1,nv)} 6= 0 may be derived from the quantum algebras (2.8).

Two Lax matricesL′(u) (3.25) and L(u) (3.27) are related by the similarity
transformation (3.26). NowV (u) is equal to the inversion matrixV (u) = Li

n(qn,−u)
(3.5). This transformation leads to the appearance of the twistS(u, v) (3.19) instead of the
Yang solutionR(u+ v) in the quantum algebraic relations.

Although the matricesKD andKgD are solutions to the more complicated generalized
reflection equation (2.7) and the dynamical equations (2.6), nevertheless these matrices make
it possible to use the simplest constant normalization of the associated Baker–Akhiezer
function [17] in classical mechanics. Namely, for the Toda lattice associated to theDn root
system in classical mechanics the Lax matrixL(u) (3.27) has the following matrix form

L(u) =
(
A B

C D

)
(u). (3.28)

Choosing the simplest constant normalizationα = (1, 0) of the associated Baker–Akhiezer
function [17] the separation variables{xj }nj=1 are defined as zeros of the entryB(u) [15]

B(u = xj ) = 0

according to the general recipe [17]. It is easy to prove that they are real eigenvalues of the
symmetric matrix defined by recursion, which has been proposed in [5]. Other separation
variables are sitting on the spectral curve of the Lax matrix (3.28) with the previously
defined variables{xj }nj=1 [15, 17].

Thus, in the considered example, the use of Drinfeld twists in the quantum case
leads to a suitable Lax representation and to simple separating normalization in classical
mechanics. We see that the algebraic properties of the Lax matrix relate to the analytical
properties of its eigenfunction. Of course, we have to study suitable properties of this
twist, which correspond to the separation of variables. Note, the constant normalization of
the Baker–Akhiezer function allows us to develop the quantum counterpart of the classical
separation of variables method within theR-matrix approach [18] for Toda lattices.

4. Integrable tops closed to the Toda lattice

Let the variablesli , gi , i = 1, 2, 3 be generators of the Lie algebrae(3) with commutator
relations

[li , lj ] = −iηeijklk [li , gj ] = −iηeijkgk

[gi, gj ] = 0 i, j = 1, 2, 3

and with the following Casimir operators

J1 = (g, g) J2 = (l, g).
Let us introduce the quantum operatorT (u) for the Neumann system

T (u) =
(
u2− 2l3u− l21 − l22 − 1

4 i(g+u− 1
2{g3, l+})

i(g−u− 1
2{g3, l−}) g2

3

)
(4.1)

where braces{, } mean an anticommutator. The operatorT (u) (4.1) at the level
J2 = (l, g) = 0 obeys the fundamental commutator relations (2.1) with the rationalR-matrix
(3.3) and closely related to the Toda system [20].
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The use of the usual covariance property (2.3), operatorT (u) (4.1) and the constant
boundary matricesKc (3.7) allows us to describe the quantum Kowalewski–Chaplygin–
Goryachev top [20].

Let us consider the known constant solution (3.20) or (3.21) to the generalized reflection
equation (2.7) with the twisted matrixS(u, v) (3.19). By using this solution we may
introduce another solution of the same equation (2.7), which is the function defined on the
Abel subalgebra ofe(3). Thus, we obtain dynamical boundary matrices on the common
quantum space with operatorT (u) (4.1)

K− =
(
u2+ α−u+ δ− iu(β−g+ + γ−)

0 u2− α−u+ δ−
)

K+ =
(
u2+ α+u+ δ+ 0
iu(β+g− + γ+) u2− α+u+ δ+

) (4.2)

such that
1
K+

2
K− =

2
K−

1
K+ .

If we set

β± = −2

then the generating polynomial (2.14) is equal to

τ(u) = tr[K+T (u)K−σ2T
t(−u)σ2] = u6(2J1− γ+γ−)+ u4J3+ u2J4.

Two independent integrals of motionJ3 and J4 mutually commute at the level
J2 = (l, g) = 0. Here we present the corresponding HamiltonianJ3 in classical mechanics
only

J3 = l+l−(g+γ+ − γ+γ− + g−γ−)− 2l23(2g− − γ+)(2g+ − γ−)
+2l3[2J1(α+ + α−)− (α−γ+g+ + α+γ−g−)]
+l3g3[2l−(2g+ − γ−)+ 2l+(2g− − γ+)− J3(α+ + α−)]
+g3(γ+α−l+ + α+γ−l−)+ δ+γ−g− + δ−γ+g+.

By analogy with (3.23), the use of automorphisms of the Lie algebrae(3) might allow us
to rewrite this Hamiltonian in a more physical form. However, for us it is more important
that all three matrices in the chain are defined in single common quantum space.

5. Conclusions

We have discussed the dynamical boundary matrices, which act in common quantum space
with other operators in the chain. These matrices are solutions to the generalized reflection
equation and dynamical exchange equations. This system of equations includes the usual
R-matrix and its Drinfeld twist depending on spectral parameters. To construct the Drinfeld
twists we use known twists of the underlying Lie algebras. In the framework of the proposed
method non-trivial representations of the reflection equation algebra may be produced in a
systematic way. As an example, we consider the twist of the Lie algebrasl(2) related to
the Toda lattices associated to theDn root system.

We believe that it is possible to apply simple algebraic tools from the theory of Lie
algebra to construct new representations ofR-matrix algebra [14]. Moreover, the different
properties of the associated integrable models may be implicitly related to their underlying
algebraic properties. As an example, it is very interesting to compare the relationship
between the Drinfeld twist theory and the separation of variables method proposed by
Sklyanin [17].



Dynamical boundary conditions for integrable lattices 8061

Acknowledgments

This work was partially supported by RFBR and GRACENAS grants.

References

[1] Faddeev L D 1984 Les Houches Lecturesed J B Zuber and R Stora (Amsterdam: North-Holland) pp 719–56
[2] Kulish P P and Sklyanin E K 1982 Quantum spectral transform methodIntegrable Quantum Field Theories

(Lecture Notes in Physics 151)ed J Hietarinta and C Montonen (Berlin: Springer) pp 61–119
[3] Cherednik I V 1984 Theor. Math. Phys.61 977
[4] Sklyanin E K 1988J. Phys. A: Math. Gen.A 21 2375–89
[5] Kuznetsov V B and Tsiganov A V 1989 Zap. Nauchn. Seminars LOMI172 89–98
[6] De Vega H J and Gonzalez-Ruiz A 1993J. Phys. A: Math. Gen.27 6129–38
[7] Kulish P P and Sasaki R 1993Prog. Theor. Phys.89 741–61
[8] Alekseev A Yu, Faddeev L D and Semenov-Tian-Shansky M A 1992 Comm. Math. Phys.149 335–45
[9] Alekseev A Yu and Faddeev L D 1991 Comm. Math. Phys.141 413

[10] Drinfeld V G 1990Leningrad Math. J.1 1419–57
[11] Bogoyavlensky O I 1976Commun. Math. Phys.51 201–9
[12] Khoroshkin S, Stolin A and Tolstoy V 1996From Field Theory to Quantum Groupsed B Jancewicz and

J Sobczyk (Singapore: World Scientific) pp 53–77
[13] Inozemtsev V I 1989 Commun. Math. Phys.121 629–43
[14] Tsiganov A V 1998 Automorphisms ofsl(2) and dynamicalr-matricesJ. Math. Phys.39 650–64
[15] Kuznetsov V B 1997 J. Phys. A: Math. Gen.30 2127–38
[16] Maillet J-M and Sanchez de Santos J 1996 Drinfeld twists and algebraic Bethe ansatzPreprint q-alg/9612012
[17] Sklyanin E K 1995Prog. Theor. Phys. Suppl.118 35–61
[18] Sklyanin E K 1985 The quantum Toda chainNon-Linear Equations in Classical and Quantum Field Theory

(Lecture Notes in Physics 226)ed N Sanchez (New York: Springer) p 196
[19] Kuznetsov V B and Tsiganov A V 1993 Zap. Nauchn. Seminars POMI205 81–9
[20] Kuznetsov V B and Tsiganov A V 1989 J. Phys. A: Math. Gen.22 L73–9


